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ON THE CONTROL OF TRANSlATIONAL ROTATIONAL MOTION 

OF A SOLID BODY* 

D.V. LEBEDEV 

The problem of control of the translational-rotational motion of a solid body in- 

duced by a system of n forces by controlling its apparent velocity is investigated. 

Algorithms which ensure asymptotic stability of such motion in the presence of 
constraintson the control parameters are presented. Generalized structures of 
algorithms for calculating the motion parameters of the solid body, which are 
necessary for determining the required control actions, are synthesized on the 
basis of available integral information about its motion. 

1. Statement of the problem. We introduce two right-hand orthogonal bases, viz. 
base E rigidly attached to the solid body, whose axes do not generally coincide withthebody 
principal'central axes of inertia, and the inertial base I. In the equations 

r'=V, V'=A +g(r) 

of motion of the solid body center of mass in the inertial space we shall consider the appar- 

ent velocity W, i.e. the remainder of velocity V and its component V, induced by the 
acceleration of gravity g(r) /l/. In the base E vector Wconforms to the equation 

W'=a--o%W (1.1) 

where a is the representation of the apparent acceleration vector A in E , and o isthevector 

of the body angular rotation velocity whose variation in time is defined by Euler's dynamic 

equations 

Jti'+ 0 >: Jo = M (1.2) 

On the assumption that motion of the body is controlled by a system of n forces of the 

form 
Fi = fiui, / pi 1 -< 1 

where fi are vectors stationary in E,u( control parameters, and the subscript i assumeshere 

and subsequently the values 1,2,..., n; n > 6. Note that vectors a and Mare definedinregion 

U by the equations 

a= i aiui, M = jJ miu,; U=(u: luij<<l) (1.3) 
,=.I i-l 

(ai = UL-'Ei, mi = pi Xfi) 

where m is the mass of the body, and piis the position vector of the point of application of 

force Fi. 

We specify in the inertial space I the apparent velocity vectorW,and in base E the fixed 

unit vector g. 

We have the problem of formulating control u under the constraint us .!I so as to impart 

to the rigid body the apparent velocity Wwhich would coincide in the inertial space with IV, 

and be collinear with the unit vector sin base E 

2. Synthesis of the control algorithm. The problem stated above reduces to that 

of controlling two processes, viz. the uniaxial orientation of the solid body along the fixed 

in I s-direction of the unit vector s = W,/Ij W,l/, and the process of imparting to the body 

the specified magnitude of the apparent velocity 11 W,II along the direction. We construct u 

so as to simultaneously control both processes. 
Note that the motion of unit vector s in base E satisfies the equation 

s'=-l_O~s (2.1) 

we introduce vector w = W-W,. Taking into account that vectorW,,which is station- 

ary in I, is time dependent in base E in conformity with the equation 
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(2.2) 

we obtain from (1.1) and (2.2) that wconforms in Eto the equation 

w'=a-_wxw (2.3) 

The problem formulated in Sect.1 is solved when the control UE U brings the body to 

the state 

w=o, E=s? o=o (2.4) 

is obtained. 
We introduce the Liapunov function of the form 

2V=~~(j-s)~+o'Jo+vw'w, p>o, v>o 

which is positive for w # O,g# s,o#O and vanishes in the equilibrium position of (2.4) 

of system (1.2), (2.1), (2.3). The time derivative of Vis by virtue of Eqs. (l-2), (2.1) and 

(2.3) of the form 

V'=o'(M--Exs)+vw'a (2.5) 

Assuming that vectors M and a in (2.5) are, respectively, 

MsMM,=Ko+pgxs, K<O, M,=(Mi*} 
a=a,=Qw, Q<O, a,=(~~*) (j=l,2,3) 

(2.6) 

we have instead of (2.5) 
V’ = O’KO + VW’QW (2.7) 

whose right-hand side is, as a function of vector y = {w', s', 0') , negative and of constant 

sign, since it vanishes not only in the equilibrium position (2.4) of the system considered 
here but, also, on the set 

Y=Y,U Y& Yr=(y:w=o=O, .sZ_k}? 
Y,=(y:w=0=0, S#&E} 

Since Y1 represents the unstable equilibrium position of system (1.2), (2.1), (2.3) and 
the set Y, does not contain entire trajectories, control (2.6) guarantees according to the 
Barbashin-Krasovskii theorem the asymptotic stability position (2.4). 

We have the problem of selecting the control u that would yield vectors M, and a,in con- 
formity with algorithm (2.6). 

Let the weight coefficients in the first of relations (2.6) be selected so that the con- 
dition 

M,GM,=(M: jz+j<l} (2.8) 

is satisfied in the considered variation range of s and o. 
The problem of distribution of required control actions between parameters ui can then 

be reduced to the problem of linear programming: determine parameters u1 which under linear 
constraints of the form 

n n 

x miui=kI,, 1x c aiui =Q, h=z?L_ 
*=I ,=I II a* II (2.9) 

would providethemaximum of the linear form I= a% 

1, = rnax 1 (2.10) 
“ELI 

The obtained from the solution of problem (2.9), (2.10) values of I, and the parameters 
of control u,' are then used for calculating the unknown control parameters ui /2/. 

( uio, x> i 
Ui= 

xui”, O<x<l x = L’ II a* II 

Note that when %>I formula (2.7) assumes the form V' = o’Ko + yw’Qw, y = ol,/l\ QW 11 > 0 
which with K< 0 and Q<O ensures that the system tends to the equilibrium position (2.4). 

3. Calculation of the solid body motion parameters. To determine the required 
values of vectors M, and a* in conformity with algorithm (2.6) it is necessary to have in- 
formation about the current state of system (1.21, (2-l), (2.3) in base E. If the relative 
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position of bases E and I is defined by matrix ?( of directl.o!ldl cusir:t,s, tt!~er~ t:l+, Li~i'ii'.':~!l! 

ation SE in base E of vector s known in I is defined by the relation $1: z SS. 
Let information on the motion of body in base E of the fern 

be measurable. In conformity with this information for the problems of calculation of the 
solid body motion parameters are dedicated, for example, the papers /3-55/. 

Using the apparatus of Lie algebra and Lie groups, we investigate the possibility of 
obtaining a general structure of algorithms for calculating parameters of solid body orienta- 

tion and its apparent velocity. 

The Poisson equation 

X' = ---n(L) x, x (to) = s,, 

whose skew-symmetric matrix Q(t) composed of proJections of 

can be represented in the form 

The constant matrices 

satisfy the equalities 

(3.2) 

rector o on the axes of base E 

where ([A,, A,] = AiAj -AjAi are Lie brackets), form the basrs Lof Lie algebra. 

We seek a solution of Eq. (3.3) in the form of the product of two matrices 

x (t) - s (t) x, 

where for small 11 -to / matrix S(t)is defined by the formula /6,7/ 

13.41 

(3.5) 

n 

,c (t) = rI ('up (&z(t) ‘4,) 
a=1 

(3.6) 

Since on the other hand S(t) is an orthogonal matrix, it can be represented in the form 

/8/ 

S (f) ~~ c.up Q (t) (3.7) 

whose skew-symmetric matrix (D(t) we represent in the form 

0 (1) = s (pm(f) A, (3.8) 
a-1 

For establishing the relation of elements r& of matrix @(f)and functions g, we use the 

Campbell-Hausdorf formula (e.g., /9/) according to which e.-l@ is represented in the form ec, 

and in the case of AR #BA 

(3.9) 

since from (3.6) - (3.9) and equalities (3.4) we have 

where (123) indicates that expressions for Q,(P~ are obtarned from (3.10) by cyclic transposr- 

tion of subscripts, and 01 = -uz = UB = 1. 
If (~a(a = 1, 2, 3) are considered as coordinates of vector qp. the relation between qPa and 

matrix S of directional cosines is defined by the formula 
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(3.11) 

Note that the equations which define functions g-(t) (a = 1, 2,s) are obtained by different- 
iating (3.5) with respect to time andthe use of formula /6,?/ 

which holds for A, BEL, and in this case coincide,apart the notation, with traditional kine- 
matic equations of solid body motion in terms of Krylov's angles /3/. 

Let us assume that the angular velocity in the neighborhood of point t = t, can be rep- 

resented by the Taylor series 

o(t) = 00 A- CO!)'? -i_ 1/loo"T2 f- . . ., t=t-to, coy = cd’) (to) 

with vector 'p represented then by the series 

Taking into accountthat the primary information (3.1) is received at discrete instants 
of time, we seek a solution of Eq.(3.2) of the form xq+k = Sq+k&r where Sq+k are increments 
of the matrix of directional. cosines induced by motion of the body during the step kh (k = 1, 
2, . . .). 

The introduction of notation 

f&h 

PI, i = &+I - &i: Pp+v = s1gn v s O(T)& 

ill 
-. 

enables us to define the general. structure of algorithms of third order accuracy in the form 

(pqck'= htk f EPn,ziY Plt.jt, E=k'I (GPrl), P11#0 (3.12) 

and specify fourth order of simplest algorithms by the formula 

with errors over the step kh equal, respectively, 

13.13) 

(3.14) 

The analysis of (3.14) shows that when condition 

2P 1% - 31i&lll = 0 

is satisfied, set (3.12) contains a subset of algorithms of the fourth order of accuracy. 
For constructing algorithms forcalculating the apparent velocity in base E we use the 

solution t 
w (t) = .s (t) 1 t\’ (to) + 5 Y’ (T) a (r) dT1 

tr 
13.15) 
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of Eq.Cl.1) and formula (3.11). 

The set of algorithms of third order of accuracy derived on the basis of lnifial informa- 

tion (3.1) is determined by formula 

lV~+rn = SN+m [ ~I’N + bvtm + i aopre io x bJ,, ,n -t 

a=1 ’ 
a$‘N+plX (Pa+pa:< hN+p,,)J (3.16) 

obtained on the assumption that in point t = t N VfCtors 0 and A have second derivatives with 
respect to time. 

In (3.16) S h'~m is the increment Of matrix xof directional cosines over the step mh. 
The coefficients a,(0 = 1, 2,3) are obtained from the linear equation 

re=c, r=(+& a=&) (~,0=1,2,:-1) 
Y~~=(l~~I-li,I)(IJ~I-liol)~ 
Yza=(l~~l~,-l~,I~,)(JJ,)-_lj,l) 
~s~=(~J~IJ~--I~II~)(I~,(-~~~~), c=~~‘i~k2*/3k3’/sk3~~’ 

Q = ‘l6kJ / I p1p2p3 I 

The error 6\VN+, over the step mh calculated by formula (3.16) is defined by the 
relation 

6wN+m == ~.~N+v,, (hs) WN + ON+,,, (h4) 

where ON+,,, (h’) is the error of calculation of the integral in (3.16) over the time interval 

.? E [LV, TV +mh), and ~SN+, (h’) is the error of calculation of the increment SN+,,, of matrix X 
over the same time interval. Explicit expressions for vector Q,+,(h’) and matrix @N+m (W 

are not adduced owing to their unwieldiness. 

4. Example. Let US investigate the process of controlling the translational rotational 

motion of a solid body when R = 6, taking the set 

a1 = a1 = IIPdNIr, a3 = a4 = jPp,O~, a5 = a6 = 1pop,jj' 
mr==--m,=lPlrlOII', ms=-mm,=IIO*sl~, m,=-mms=l/pLIOOjI 

as the vectors II, and rni (i= 1.2, . . ., 6). 
We introduce the notation 

m,* -= M,'lPj, fj' = a,*Ipj (/ = 1.2.3) 

If the parameters of control U, obtained with the use of relations 

ul,* = %Ur**ml*), ~2,~ =: I/? (fl*+m2*). uj,6 ~7 V2(fi* tm3*) 

do not belong to set U, we obtain their values that satisfy condition UE 11 using the results 

of Sect.2. 
Since the rank of the system of constraints(2.9) is five, the linear foml I=a'A is a 

function of a single variable, and the determination of its maximum L* does not present dif- 

ficulties. 
The set A ofpossible orientations of unit vector A= !h,.h,,h,]in base E is in this case of 

the form of a combination of six subsets 
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which are valid for \mj*l< Z(j= 1,2,3). 

The maximum values li* of the linear form 1 in the above subsets are, respectively, 

z* QT l.z=Prl’ , lj, = pl,jF, 13, = p$ 
In modelling the control of a solid body motion whose orientation in the intertial space 

was defined by the quaternion T = (TO' T1r T?, Ts). the process of imparting the apparent velocity 

Fig.1 

REFERENCES 

w,= 20 m/s along its longitudinal axis 

(5 = (1,0,0)) was investigated. The in- 

itial state of the body andthestation- 

ary in base I vector s were respectiv- 

ely set as follows: 

W (0) = 0. o (0) = O,r (0) = (0.001; 0.3; 0.6; O.i4169) 

s = (0.96987; 0.17098; -0.ii361) 

The pattern of apparent velocity 

variation defined by projections WtCi= 

1,2,3) on the axes of base E ,ofangular 

velocities 0,. oz,03 of body rotation, 

of the cosine of the angle between 

vectors f and s (1). and of parameters 

ui(i=1,2....,6) in the motion process 

of the body can be seen in Fig-l, where 

curves with even numbers are shown for 

clarity by dash lines. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

ISHLINSKII A.Iu., Orientation, Gyroscopes and Inertial Navigation. Moscow, NAUKA, 1976. 

LEBEDEV D.V., On the control of a rigid body's triaxial orientation in the presence of 

constraints on the controls. PMM, Vol.45, No.3, 1981. 

BRANETS V.N. and SHMYGLEVSKII I.P., The Application of Quaternions in Problems of Solid 
Body Orientation. Moscow, NAUKA, 1973. 

PANOV A-P., Asymptotic evaluation of errors of methods and determination of a solid body 
orientation parameters. In: Cybernetics and Computational Techniques, Vol.47, Kiev, 
NAUKOVA DUMKA, 1980. 

TKACHENKO A.I., Improvement of the accuracy of computation of kinematic parameters. In: 
Cybernetics and Computational Techniques. Vo1.19, Kiev. NAUKOVA DUMKA, 1973. 

WE1 J. and NORMAN E., On global presentations of the solutions of linear differential 
equations as a product of exponentials. Proc. Amer. Math. Sot., Vo1.15, No.2, 1964. 

BROCKETT R.W., Lie algebras and Lie groups in the control theory. In: Mathematical Methods 
in the Theory of Systems /Russian translation/. Moscow, MIR, 1979. 

GANTMAKHER F.R., The theory of Matrices. Moscow, NAUKA, 1967. (See in English, Chelsea, 
New York, 1959). 

SIRR G.P., Lie Algebras and Lie Groups /Russian translation/. Moscow, MIR, 1969. 

Translated by 5.5.3. 


